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In the name of God, the Merciful, the Compassionate

We did indeed offer the Trust 
to the heavens and the earth and the mountains; 

but they refused to undertake it, being afraid thereof; 
but man undertook it; 

he was indeed tyrant and ignorant.

The Holy Koran, The Final Testament, 33:72
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A BST R A C T

This study considers a nonlinear adaptive controller for a Heating, Ventilation 

and Air-Conditioning (HVAC) system. The controller is designed to optimize a cost 

function that trades energy cost off against a cost associated with the loss of 

thermal and environmental comfort. The cost function that is used is non-quadratic 

in the airflow-rate, making its derivation and implementation at variance with 

traditional Linear Quadratic Regulator (LQR) based techniques.

Imbedded in the adaptive controller is an adaptive identification algorithm 

that treats the system parameters as unknown variables. Two distinct strategies are 

investigated for identification; gradient descent and recursive least squares (RLS). A 

cost comparison is made between adaptive and nonadaptive operation for several 

different cases.
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1

C H A P T E R  1 

IN TR O D U C T IO N

A major contributor to energy consumption in both the US and abroad is 

environmental conditioning of commercial buildings. In the US it accounts for over 

a third of the net national consumption [1 ], Overseas this figure is even higher [2 ].

It is clear that given this high proportion of energy consumption cost attributable to 

heating and cooling of commercial buildings, even moderate increase in its efficiency 

can be expected to result in major energy savings. Consequently, in recent years 

there has been renewed interest in the design of heating, ventilating and 

air-conditioning (HVAC) systems that are more energy efficient and do not sacrifice 

thermal and environmental comfort.

This thesis focuses on the formulation and evaluation of an adaptive nonlinear 

optimal feedback control scheme that achieves such a balance. Simply put, the 

optimal control methodology requires two steps. First, one must formulate a cost 

function that in this case must include both the energy cost and a cost associated 

with overall level of comfort. Such a function must penalize at the same time 

excessive energy consumption and large deviations from user selected conditions 

that ensure prescribed levels of comfort. The second step would be the formulation 

of a feedback control law that minimizes the selected cost, thereby balancing the 

competing needs of energy efficiency and the maintenance of a comfortable 

environment.
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The bulk of the previous work in this area has focused on the use of linear 

optimal control schemes, specifically the Linear Quadratic Regulator (LQR). The 

most important assumptions underlying LQR control are that the system to be 

controlled is linear and that the cost function to be optimized is quadratic in the 

system state and the input [3]. For non-linear systems, LQR theory can be applied, 

to yield a suboptimal controller that assumes a linearized plant. Specifically, one 

must select a nominal trajectory for the state and the optimizing input and assume 

that neither the state nor the input ever departs significantly from this nominal. 

Under these conditions the nonlinear system can be reasonably approximated by a 

linear system obtained by linearization around the nominal trajectory. The 

suboptimal controller is then designed via traditional LQR theory by treating the 

linear approximation as the actual system. Such an approach has been used by 

Zaheeruddin et. al. [4] in devising a suboptimal contoller for space heaters. Two 

drawbacks of this method are that (i) many of the system parameters may be 

imprecisely known or may even vary with time; and (ii) the cost function to be 

optimized may be non-quadratic. Such is indeed the case for HVAC systems. Not 

only is the HVAC system highly nonlinear, but the corresponding cost function that 

trades off energy cost against comfort cost is non-quadratic, with the term arising 

from the cost of fan operation being cubic in the air flow rate [5]. What is more, 

some of the key system parameters, such as external temperature and thermal load 

vary over time, and are difficult to accurately measure. Some of these difficulties are 

ameliorated by Roth et al. [6 ]. In their scheme, Roth et al. [6 ] adopt an adaptive 

approach. In essence this calls for an estimation process that starts with initial 

estimates of the unknown parameters. These estimates are continuously updated as 

more and more input-output information becomes available. At each instant of time,
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the controller parameters are chosen on the assumption that the current parameter 

estimates represent true values of the quantities they respectively approximate. The 

controller parameters are then updated with the parameter estimates offered by the 

estimation process. In the sequel, the parameter estimation part of an adaptive 

controller will be referred to as the adaptive identification algorithm.

Roth et al. [6 ] design such an adaptive controller where the underlying controller 

parameters are selected on the basis of LQR design. To accommodate the needs of 

LQR design they (i) linearize the plant and (ii) select a quadratic cost function by 

dropping the component attributable to the cubic term associated with the cost of 

operating the fan. An exact optimal controller is provided by House et al. [5]. This 

controller assumes perfect forecast of ambient temperature and thermal load and is 

not amenable to on-line implementation.

A recent report [7], had reported a new optimal control strategy that had the 

following features. It assumed the non-quadratic cost function that included the fan 

operation cost. Furthermore, while some approximations were used in its 

formulation, unlike LQR control, it resulted in a non-linear controller. Nonetheless, 

this scheme did assume perfect knowledge of the HVAC system parameters. This 

thesis, however, discusses a control scheme that relaxes the assumption of perfectly 

known system parameter estimates. To allow for these uncertainties, the previously 

formulated nonlinear optimal control scheme is combined with an adaptive 

approach. Thus, an adaptive identification algorithm that continuously updates 

estimates of the system parameters is employed. The controller parameters are 

updated in accordance with these estimates.

This thesis is structured as follows. Since [7] had given only the conceptual 

essentials of the non-adaptive optimal control scheme, Chapter 2 gives full details of
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this scheme and its derivation. Chapter 3 presents the first approach to a nonlinear 

adaptive control scheme which uses gradient descent as an identifier. Chapter 4 

provides simulations for the Chapter 3. Chapter 5 presents the second approach to 

a nonlinear adaptive control scheme using recursive least squares as an identifier 

and gives simulations. Chapter 6  is the conclusion.
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C H A P T E R  2 

A N  OPTIM AL CONTROLLER

This Chapter presents a feedback scheme for the Optimal Control of a Heating, 

Ventilating and Air-conditioning (HVAC) System. The goal is to reduce the cost of 

system operation while retaining acceptable conditions of thermal and 

environmental comfort. The scheme presented here assumes perfect knowledge of 

the system parameters . In later chapters this scheme is modified into an adaptive 

version which no longer requires this knowledge. The outline of this chapter is as 

follows. Section 2.1 presents the HVAC system, the cost function to be optimized, 

and some other preliminary information. Section 2.2 derives and presents the 

promised Optimal Control scheme. Section 2.3 proves the local stability of the 

system and Section 2.4 is the conclusion.

2.1 Preliminaries

The HVAC system model is given by

Zi(f) = r 3 (t) +  ( r a - T 3( t ) ) j ^  (2 .i)

pCpVhf 2(t) = f{t)pCp(Tx{t) -  T2(t)) +  qh{t) (2 .2 )

pCpVzT3(t) = f( t)pCp(T2(t) -  Ts {t)) +  qz (2.3)

where ( ' )  =  d /dt, T\{t) and T2 (t) are, respectively, the air temperatures prior to 

and immediately following the heat exchanger, T$(t) is the temperature of the 

thermal zone, Ta is the temperature of the outside air, p is the air density, Cp is the
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Figure 2.1: The HVAC System

constant pressure specific heat of air, 14 is the effective volume of the heat 

exchanger, Vz is the effective thermal space volume, f a is the flow rate at which the 

external air enters the system, qh(t) is the heat input to the heat exchanger, f( t)  is 

the volumetric airflow rate and qz is the thermal load. The HVAC system is 

depicted in Figure 2.1.

In the sequel, the external air flow rate is kept at its minimum allowable value

fa — fam •

The overall goal is to devise a feedback law tha t uses the temperatures T2(t) and 

T3(t) to modulate the two quantities qh(t) and f( t)  so as to minimize the 

performance index

where the aSs are cost weighting factors and the subscript “re /” refers to the value
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Table 1: Physical Parameters

Parameter Value

P 1.19 kg/m3

cp 1005 J/kg-°C

Vh 25.5 m3

Vz 255 m3

Ta 30°C

qz 1900 Watts

a2 4.86x 10-3 $/min-°C2

5.39xlO - 10 $/min-W 2

OL\ 5.20xl0 - 5  $-min/m 6

a  5 1 .2 2 x l 0 ~ 6 $-min2 /m 9

fam 0.05 m3/sec

corresponding to the maximum level of comfort. Further, T2(t) and T3(t) constitute 

the system states and qh{t) and f ( t )  the control inputs. Accordingly, one defines the 

state vector

x(t) =  [zi(t) x 2(t)\' = [!T2(t) T3(t)Y (2.5)

and the input vector

u(t) =  [ui(t) u2(t)]' = [qh(t) f ( t )Y  (2 .6 )

where prime denotes the transpose. The physical parameters in the foregoing are 

given in Table 1. The minimization must be performed subject to the additional 

constraint that

f i t )  > f a m -

The first and the third terms in the cost function of (2.4) are comfort costs due to 

temperature mismatch and the level of draft, respectively, while the second and the
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fourth are energy costs deriving from heat exchange and fan operation, respectively. 

The optimization of this cost function thus affects a trade off between comfort level 

and the resulting operating cost of the HVAC system.

It is noteworthy that the cost function to be minimized here is non-quadratic. By 

way of comparison one can cite the Optimal Control law embedded in the Adaptive 

Optimal Control algorithm of [6 ]. Appealing as it does to Linear Quadratic 

Regulator (LQR) theory, [6 ] drops the non-quadratic term a 5f 3(t) in (2.4) and 

derives a linear controller obtained on the basis of a linearized version of the model 

equations (2.1), (2.2) and (2.3). The controller of [6 ] thus seeks to minimize the 

modified cost function:

d tJ m  — J  ct2 { T z { t )  — T z tref )2 -f <%■$q h ( t )2 + a4(/(i) — f ref ) “
0

where here onwards

Tr =  T3>re/

and

f r  — f r e j  ■

By contrast the work reported here does not ignore the a 5f 3( t )  term, and 

formulates instead a nonlinear control law described in Section 2.2.

2.2 The Controller

First note that, for the optimization problem to be well posed, there must exist 

control input and state values for which the system equations (2.1), (2.2) and (2.3) 

are at steady state and, moreover, the integrand of the cost function to be 

minimized is zero. Otherwise the cost function would be infinite over the infinite
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horizon of its operation and consequently the optimization problem would not have 

a solution. It is readily verified that the integrand in (2.4) cannot in general be zero. 

To circumvent this difficulty one may pose the alternative problem of minimizing:

OO

Jx = J  [a2{T3(t) -  Trf  + a 3ql(t) +  a 4(f(t)  -  / r ) 2 +  a 5f 3(t) -  J e] d t  (2.7)
o

where Je is a constant representing the minimum steady state value that the 

integrand in (2.4) can assume; i.e.

Je = min (a 2{T3(t) -  Tr ) 2 +  a 3q2h(t) + a 4 ( /(t)  -  f r )2 +  a 5 / 3 C0) (2-8)

subject to

T2(t) = 0, T3{t) = 0 (2.9)

and

f ( t ) > f a m .  (2 .10)

Indeed, while technically one can have a lower value of the integrand in (2.7) by 

setting

T3( t ) = T r ,

Qh(t) -  0

f - a 4 +  J a l  + 6a 4a 5f r 
f{ t)  = max < f am, -----------------------------

at these values the derivative of T3 (t) is not zero. Consequently, these values 

themselves can only be momentarily maintained.

The problem of minimizing (2.8) subject to (2.9) and (2.10) is readily solvable 

and the constant determined. Further, as Je is a constant, the control law that
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minimizes (2.7) also minimizes (2.4). Henceforth Jx , (2.7), is referred to as the 

excess cost.

Proceeding in a standard fashion tha t is explained in Appendix A, and  using the 

notations (2.5) and (2.6), we work with the finite horizon cost function

to formulate the two dimensional costate vector p(t) — [pi(t) P2 (^)]/ and the 

Hamiltonian as given by (A.5)

and obtain the control law from

and

which are the applications of (A.7), (A.8) and (A.9) to the HVAC System. 

First observe th a t  (2.1), (2.2) and (2.3) can be rewritten as



www.manaraa.com

11



www.manaraa.com

12

It is found that in (2.21) the second term on the right hand side always dominates. 

Thus we can effectively replace (2.21) by

— &4 + \ J &4 + ^a 5 2 « 4  f r —  ( x 2 ( t )  ~  X \  ( t ) )  ~
u2(t)

3 a*
(2 .22)

Observe, the determination of Ui(t) and U2(t) requires the knowledge of both p(t) 

and x(t). As the former is the solution of a differential equation for which a 

boundary, (2.14), as opposed to an initial condition, is provided, the above control 

law is unimplementable online and in fact may not even have a closed form solution.

To remove this difficulty, we introduce an approximation. The following 

approximation turns out to be nothing but the same linearization process that is 

explained in Appendix B. With this approximation, we basically expand the 

nonlinear state equations (2.16), (2.17), (2.18), and (2.19) into a Taylor series about 

a nominal operating point (x*,u*,p*) with star denoting the steady-state value.

Define p*, x* to be such that with p =  p* and x  =  x* the integrand in (2.7) is 

zero under (2.20) and (2.22). Observe, if at some <*, p(t*) = p* and x(t*) =  x*, then 

for all t > t*, under (2 .2 0 ) and (2 .2 2 ), p(t) = p* and x[t) — x* and moreover, the 

integrand in (2.7) is zero. Further with Ap(t) =  p(t) — p* and Ax(t)  — x(t) — x* , if 

for some t*, Ap(t*) and Ax(t*) is sufficiently small, then to a first order 

approximation (2.16)-(2.19) can be replaced by

’ 1 T A t. (i)
(2.23)

where B  is positive definite symmetric and C  is positive semidefinite symmetric. 

This approximation becomes better as t j  tends to infinity. Also as t f  tends to 

infinity, [6 ], the solution to (2.23) can be written as

A x(t) • A - B  ■ A x(t)

. Ap(t) _ . -c —A' . . Ap(t) _

A p(t) =  PAx{t)
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where P  is the unique (under mild assumptions) positive definite symmetric 

solution to the Riccati equation

Once A, B  and C are obtained, (2.24) is easily solved. The control law we propose 

then is (2.20), (2.22) and

with P the positive definite solution of (2.24). If t f  =  oo, and Ap(0) and Ax(0) are 

“small” , this law is to a first approximation the desired optimal controller for all 

finite t. Local stability of this particular solution will be shown in Section 2.3. 

Observe, despite the linearization in the design process, one has a nonlinear 

controller.

Following is the required x*, p*, A, B  and C which are obtained in Section B .l as

A'P  +  PA  +  C -  P B P  = 0 . (2.24)

p(t) = P (x(t) — x*) +  p* (2.25)

(B.17), (B.23), (B.24) and (B.25);



www.manaraa.com

14

Notice aforementioned positive definite symmetric characteristics of B  and  positive 

semidefinite symmetric characteristics of C.

The overall optimal controller is, then, as in (2.20) and (2.22), with p(t) 

computed by (2.25), (2.26)-(2.29), and P, the unique positive definite symmetric 

solution of (2.24), with A, B  and C as in (2.30)-(2.32). Observe when the system 

parameters are constant and known, P, x* and p* can be computed offline and only 

(2.20), (2.22) and (2.25) need to be computed online.

2.3 Local Stability

In this section, we determine local stability of linearized HVAC system given by 

(2.23) as
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and

r 0 0
c =

0  2 a 2

for

First we prove that the subsystem

A x(t) =  AAx(t)  — BAp(t) = (A — B P )A x( t)  =  A A x ( t )  (2.34)

is locally asymptotically stable. Observe, (2.34) is the result of (2.23) using the fact 

that

as given on page 1 2 .

Let G be a matrix having the same rank as B  and such that B  = GG', and Q\ a 

matrix having the same rank as C and such that C  =  Q \Q i- Checking, therefore, 

[A, G\ for completely controllableness (c.c.) and [A, Q{\ for completely 

observableness (c.o.) should suffice to establish that the closed loop system matrix 

A  = A — B P  is asymptotically stable - see Appendix C for details -.

G turns out to be

Ap(t) = PAx(t)

G
p / V h v / V z 

p /V z 0

for

2

2 k2S{S  -  a 4)2

and

,2 1
V

2 a 3k2 ’
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since

1/Vi2 - 1 / ( W + v2

10rH1

. -i/(vhv,) l/n 2 L o o J

and Qi turns out to be

Qi =  [ 0 ] •

[4,(7] is c.c. because [G, AG] has rank 2 , and [A,Qx] is c.o. because [Q[, (Q^A)']' 

has rank 2 . Therefore A  is asymptotically stable, i.e. x(t) —> x* as t oo. Since P  

is a finite matrix it follows that p(t) p* as t —>• oo [3]. We, therefore, have 

established that the linearized HVAC system of (2.23) is locally asymptotically 

stable.

2.4 Conclusion

This Chapter presented a feedback scheme for the Optimal Control of an HVAC 

System with the goal to reduce the cost of system operation while retaining 

acceptable conditions of thermal and environmental comfort. The scheme presented 

here has assumed perfect knowledge of the system parameters . First we have 

presented the HVAC system, the cost function to be optimized, and some other 

preliminary information in Section 2.1. Then the promised Optimal Control scheme 

was derived in Section 2.2 with its local stability proven at Section 2.3.
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C H A P T E R  3

A D A P T IV E  CONTROLLER SCHEM E 1: G R A D IE N T  D E S C E N T

The nonlinear optimal controller presented in the previous chapter assumes 

perfect knowledge of the parameters and assumes all to be constant. Unfortunately, 

in practice, over a course of a day operation, parameters vary and some of them in 

particular may be difficult to measure. Thus we are presenting an adaptive version 

of the controller given in Chapter 2 . The parameters object to being identified are 

the effective volume of the heat exchanger (1 4 ), the temperature of the outside air 

(Ta), k = pCp where p is the air density and Cp is the constant pressure specific heat 

of air, the effective thermal space volume (Vz) and the thermal load (qz).

In essence the overall scheme is as depicted in Figure 3.1, where u(t) is the input 

vector comprising the heat input to the heat exchanger qh{t), and the volumetric air 

flow rate f( t) ,  i.e.

u (t) = [Qh(t) /(*)]'; (3.1)

and x(t) is the state vector

i ( t )  =  P i( t)  (3.2)

T2(t) being the temperature of the air immediately after the heat exchanger and 

T3(£) the temperature of the thermal zone. The major difference between the 

scheme of Chapter 2  and the adaptive scheme presented here is the inclusion of the 

identifier. Using the input and state vector measurements, the identifier provides 

estimate 6 of parameters, estimate that is continuously updated. The controller in
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Figure 3.1: An Adaptive Control Scheme

its turn is exactly as in Chapter 2 with the estimates of the parameters replacing 

the parameters in the controller equations of Chapter 2 .

For the estimation of the parameters, first gradient descent approach will be 

used. The current chapter, therefore, will give theoretical background to gradient 

descent and then apply it to the nonlinear optimal controller of Chapter 2. After 

applications of Nonlinear Adaptive Optimal HVAC algorithm using gradient descent 

to different combinations of the five aforementioned system parameters in the 

present chapter, and simulations (Chapter 4), Recursive Least Squares approach to 

the parameter estimation will be undertaken in Chapter 5.

The outline of this chapter is as follows. Section 3.1 presents the theory behind 

the gradient descent theory and its application to the nonlinear optimal HVAC 

system in general. Section 3.2 shows the application of the gradient descent scheme 

into the specific cases for the nonlinear optimal HVAC system. Section 3.3 gives the
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conclusion for this chapter.

3.1 Adaptive Identifier 1: Gradient Descent

The model-reference adaptive system (MRAS) is one of the main approaches to 

adaptive control [8 ]. A reference model expresses the desired performance and gives 

the desired response to a command signal. The system also has an ordinary 

feedback loop composed of the process and the controller. The error e is the 

difference between the output of the system and the reference model. The controller 

has parameters that are changed based on the error. The inner loop, which is an 

ordinary control feedback, is assumed to be faster than the outer loop which adjusts 

the parameters in the inner loop.

The gradient descent approach is one of the three approaches to the analysis and 

design of a MRAS, the other two being Lyapunov functions and passivity theory [8 ], 

and is indeed a fundemantel idea in the MRAS approach. The gradient descent 

approach is based on the assumption that the parameters change more slowly than 

the other variables in the system [8 ]. This assumption, which admits a 

quasi-stationary treatment, is essential for the computation of the sensitivity 

derivatives that are needed in the adaptation mechanism. In general the gradient 

descent approach does not result in a stable closed loop system. Lyapunov stability 

theory has been used to modify the adaptation mechanism.

3.1.1 Application of the Gradient Descent

For the system equations of the HVAC plant

1

s'lW =  v
Vh

U i ( t )  (x2(t) ~  X i  (t)) + f a  {Ta -  X 2 ( t ) )  +
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a?2(*) =  ^ y ^ - (x i ( t )  - x 2(t)) +  ' (3.3)

there is a need to filter the signals to avoid explicit differentiation. For this purpose 

we introduce

=  7 T I x ( s )  (3'4)

=  •W 'W . (3.5)
S + 1

where X(s) is the Laplace transform of the state vector x(t), i.e. X(s) =  £[x(t)\, 

and likewise, W(s) — C[w(t)], and X (s)  =  £[x(t)]. The definitions (3.4) and (3.5) 

would translate into the time domain as

x(t) = w(t) =  —w(t) +  x ( t ) . (3.6)

The new set of system equations are therefore

x(t) = V'(t) 9 (3.7)

where 9 is a vector of parameters to be estimated and V  is a matrix whose elements 

represent state variable filter outputs that permit adaptive identification without 

having to explicitly differentiate any signal. Observe that elements of V  are known 

or measurable. The adaptive identifier to be presented here assumes that the 

parameters, though unknown, are constant.

Define, with 9 being the vector of identified parameters,

T(t) = V \ t ) 9 ,  (3.8)
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Again, V{t) and x(t) can be directly measured. The gradient descent would be to 

minimize E 2(t) where

E(t) = x ( t ) —x(t).  (3.9)

Then the parameter estimate law is given by

=  - A  V (t)E (t)  

= — A V (t)  [x(t) — x(t)] (3.10)

where A is an n x n diagonal matrix whose diagonal elements are positive real 

numbers and used as selected update gains, with n being the number of the 

parameters to be estimated.

3.1.2 Adaptive Controller Using Gradient Descent

As noted at the outset of this chapter, the overall adaptive control algorithm is a 

combination of the identifier given in section 3.1.1 and the controller as given in 

Chapter 2, with 9 replaced by 9.

Thus the overall adaptive control algorithm is as follows:

<+\ -  ~ P l ^  

l (  } 2 a 3k V h

21

U2(t) = max
- 0 ( 4  +  4 +  30(5 [2  a i f r  -  ( x 2 { t )  -  X i  ( t ) )

fa r m
3 a 5

with p(t) — \pi(t), P2(t)}' computed by

p(t) = P(t)[x(t) -  x*(t)] + p * ( t ) ,



www.manaraa.com

22

and P(t) being the unique positive definite symmetric solution of the Algebraic 

Riccati Equation

together with the identifier. Observe there are fast and accurate algorithms for 

solving the Algebraic Riccati Equation in (3.11).
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3.2 Applications: Gradient Descent

In this section the identifier of Section 3.1 will be used to estimate different 

combinations of five system parameters, namely,

• the effective volume of the heat exchanger 1 4 ,

• the temperature of the outside air Ta,

• k = pCp where p is the air density and Cv is the constant pressure specific 

heat of air,

• the effective thermal space volume Vz, and

• the thermal load qz.

When five or four of the system parameters form the 9 to be identified, the 

gradient descent algorithm does not converge. Combinations of some two or three 

parameters can, on the other hand, be identified using gradient descent. There will 

be six subsections subsequently in the present chapter, each one presenting the 

adaptive identifier for the specific combination. The simulations for these 

combinations will be given in Chapter 4 with the corresponding case numbers.

3.2.1 C ase(l):  Ta and qz unknown

The adaptive identifier to be presented here assumes that the temperature of the 

outside air Ta and the thermal load qz are constant but unknown, i.e. 9 =  [Ta, qz]'.

Define the signals Wi(t), w2(t), Z i ( t ) , z \ { t )  as follows

wx(t) = -w i ( t )  + T 2(t),

w2{t) — - w 2(t) + T3(t) (3.12)

23



www.manaraa.com

24

and

where f a is the flow rate at which the outdoors air enters the system; 14 and Vz are 

the effective volumes of the heat exchanger and the thermal zone respectively, and k 

equals to pCp with p the air density and Cp the constant pressure specific heat of 

the air. Observe, (3.12) and (3.13) represent state variable filters tha t permit 

adaptive identification without having to explicitly differentiate any signal. All 

quantities in (3.12) and (3.13) are known or measurable. Define

Again (3.14)-(3.16) can be directly measured. Then the parameter estimate law is 

given by
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3.2.2 Case(2): Vh and qz unknown

The adaptive identifier to be presented here assumes tha t the effective volume of 

the heat exchanger Vh and the thermal load qz constant unknowns, i.e.

6  =  [ 1 / V h , q z }'.

Define the signals z i ( t ) , z 2(t) and z3(t) as follows

All quantities in (3.18) are known or measurable. Define

The signals Wi(t) and w2{t) are as given by (3.12) at Section 3.2.1. Again 

(3.19)-(3.21) can be directly measured. Then the parameter estimate law is given by
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3.2.3 Case(3): Ta and Vz unknown

The adaptive identifier to be presented here assumes tha t the tem perature of the 

outside air, Ta and the effective thermal space volume, Vz are constant unknowns, 

i.e. 6 = [Ta, \ /V z}'.

Define the signals zi(t), z2(t) and z3(t) as follows

Observe, (3.23) represent state variable filters tha t permit adaptive identification 

without having to explicitly differentiate any signal. All quantities in (3.23) are 

known or measurable. Define

The signals Wi(t) and w2{t) are as given by (3.12) at Section 3.2.1. Again 

(3.24)-(3.26) can be directly measured. Then the parameter estimate law is given by
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3.2.4 Case(4): k and qz unknown

The adaptive identifier to be presented here assumes tha t both k =  pCp, with p 

the air density and Cp the constant pressure specific heat of air, and the thermal 

load qz are unknown constants, i.e. 9 =  [l/k,qz/k]'.

Define the signals Z\(t), Z2 (t), z$(t) and z^(t) as follows

The signals W\(t) and W2 (t) are e ls given by (3.12) a t Section 3.2.1. Again 

(3.29)-(3.31) can be directly measured. Then the parameter estimate law is

3.2.5 Case(5): Vh, Ta and Vz unknown

The adaptive identifier to be presented here assumes tha t Vh, Ta and Vz are 

unknown constants, i.e. 6 = [1/T4, Ta/Vh, l /V z}'.



www.manaraa.com

28

Define the signals zi(t) ,z2(t) and z3(t) as follows

Observe, (3.33) represent state variable filters tha t permit adaptive identification 

without having to explicitly differentiate any signal. All quantities in (3.33) are 

known or measurable. Define

The signals wi(t) and w2(t) are as given by (3.12) at Section 3.2.1. Again 

(3.34)-(3.36) can be directly measured. Then the parameter estimate law is given by

3.2.6 Case(6): Ta, Vz and qz unknown

The adaptive identifier to be presented here assumes th a t Ta, Vz and qz are 

unknown constants, and 9 — [Ta, 1/VZ, qz/Vz]'.
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Define the signals Z i ( t ) ,  z 2 ( t ) ,  z 3 ( t )  and z ^ ( t )  as follows

Observe, (3.38) represent state variable filters tha t permit adaptive identification 

without having to explicitly differentiate any signal. All quantities in (3.38) are 

known or measurable. Define

The signals w \ ( t )  and w 2 ( t )  are as given by (3.12) at Section 3.2.1. Again 

(3.39)-(3.41) can be directly measured. Then the parameter estimate law is given by
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3.3 Conclusion

This chapter has presented an adaptive version of the controller of the Chapter 2 

by using the gradient descent approach. After the theoretical information about the 

gradient descent, we have applied it to the nonlinear optimal controller. Then in the 

Section 3.2 the applications of Nonlinear Adaptive Optimal HVAC algorithm using 

gradient descent to identify different combinations of the five aforementioned system 

parameters have taken place.

The adaptive identifier presented has assumed that the parameters, though 

unknown, are constant. Note that during the process of applying the gradient 

descent to the HVAC system there is a need to filter the signals to avoid explicit 

differentiation. The overall adaptive control algorithm turned out to be a 

combination of the identifier given in Section 3.1.1 and the controller as given in 

Chapter 2, with 6 replaced by 9.
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C H A P T E R  4 

SIMULATIONS FOR THE G R A D IE N T  D E SC E N T

This chapter documents simulations conducted on the Adaptive Control 

Algorithm formulated in Section 3.2 of Chapter 3. The principle purpose of the 

simulations reported in this chapter is to compare the Adaptive Control Algorithm 

of Chapter 3 with its nonadaptive counterpart in Chapter 2. For this purpose, two 

types of simulation results for six different combinations are reported. The first set, 

given in Sections 4.1 through 4.4, considers the cases where just the two out of the 

five parameters -see Section 3.2- are constant but unknown. The second set, given 

in Sections 4.5 and 4.6, considers the cases where three out of the five parameters 

are constant but unknown. Section 4.7 differs from the rest in having varying 

parameters to be identified. Specifically, the following setting from Table 1 is 

considered throughout this chapter:

a 2 =  4.86x 1CT3 $/min-°C2, 

a 3 =  5.39xlO - 1 0  $/min-W2, 

a 4 =  5.20 xlO - 5  $-min/m6, 

a 5 = 1 . 2 2 x l 0 ~ 6 $-min2 /m 9

and

fam =  0.05 m3/s .
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The set points Trej  and f ref  are 24 °C and 0.142 m3 /s, respectively, and the initial 

value for the state vector is

f T2(0) = 16°C 

\  T3(0) =  28°C

for all of the simulations.

For each of the following seven sections, two simulations are conducted. In the 

first simulation of each case, all the parameters are assumed known and the 

nonadaptive control law of Chapter 2  is implemented. In the second simulation of 

each case, corresponding combinations of two or three parameters are assumed as 

being unknown but constant and the adaptive algorithm of Chapter 3 is 

implemented with specified initial estimates. Following is the actual values of the 

parameters used throughout the simulations;

k =  pCp = 1.19 kg/m 3x 1005 J/kg-°C =  1195.95 J /m 3-°C,

Vh — 25.5 m3,

Vz =  255 m3,

Ta — 30°C and

qz =  1900 W.

4.1 C ase(l):  Ta and qz unknown

This section documents the simulations conducted on the Adaptive Control 

Algorithm formulated in Subsection 3.2.1 of Chapter 3. The actual values of the 

parameters to be identified are 6 =  [Ta, qz]' — [30,1900]'. For the adaptive control 

law implementation of this case, Ta and qz are assumed as being unknown constants

32
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t im e  (m in)

Figure 4.1: Case(l): Ambient Temperature Estimation

and the adaptive algorithm of Chapter 3 is implemented with the initial estimates 

of Ta and qz respectively given by

0,(0) = T a(0) = 3 1 °C

d2 (0) =  qz(0) = 2000 W.

Figures 4.1 and 4.2 depict the estimation ability of the adaptive identifier with 

respect to the estimates of Ta and qz. It is evident from these figures that the 

estimated ambient temperature converges to the actual Ta of 30 °C in about 3 

minutes while the estimated thermal load converges to the true qz, value of 1900 W, 

in less than 10 minutes. The selected adaptation gains for this specific case is

(4.1)

Observe in Figures 4.3 to 4.8 the relative performance of the adaptive and
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x 104

Figure 4.2: Case(l): Thermal Load Estimation

nonadaptive laws with respect to a variety of performance measures. Now consider 

the details of this performance. The theoretical values of T2 and T3 that minimize 

the integrand in (2.4) are

t ;  = 10.125 °C 

t ;  =  24.015 °C

Indeed in Figure 4.3 one sees on the left that the actual T2 attains this value T2 in 

around 20 minutes for both the adaptive and nonadaptive controller. Likewise T3 

also achieves its optimizing value T3* in about 2 0  minutes as seen on the right of 

Figure 4.3.

Figure 4.4 depicts the total cost over the attainable steady state minimum on the 

left side and the total cost itself over period of 72 minutes on the right. Recall that 

the total cost over the attainable steady state minimum is calculated as Je(tf) given
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Figure 4.3: Case(l): Temperature Regulation

Figure 4.4: Case(l): Total Cost
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Figure 4.5: Case(l): Comfort Cost

and

and the total cost itself is

Observe in Figure 4.4, in less than 15 minutes Je settles down to a constant value 

i.e. the integrand in (4.2) becomes zero. Similarly Figure 4.5 depicts the portions of

Figure 4.6: Case(l): Energy Cost
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Figure 4.7: Case(l): Airflow Rate

Je and J  attributable to the comfort cost, just as Figure 4.6 depicts the energy 

components of Je and J. Again, two plots on the left of Figures 4.5 and 4.6 indicate 

that costs stop rising after 15 minutes which reflects to the plots on the right of 

these figures as cost and energy costs rising at constant rates after 15 minutes. To

Figure 4.8: Case(l): Heat Input
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be more precise, after about 1 2  minutes total cost rises linearly at the rate  of about 

25 cents per hour.

Figures 4.7 and 4.8 give the corresponding plots for the air flow rate and heat 

input respectively. After some initial transients, in about 20 minutes these settle 

down to values of 0.114 m3/s  and —2, 257.8 W, respectively. Observe f is always 

larger than f am. Note again that each of these performance curves applies to both 

adaptive control with unknown Ta and qz and non-adaptive control with known Ta 

and qz.

4.2 Case(2): Vh and qz unknown

As the title of the section suggests, the effective volume of the heat exchanger Vh 

and the thermal load qz are assumed unknown for the simulations of the adaptive 

algorithm. The actual effective volume of the heat exchanger Vh is 25.5 m 3 and the 

actual thermal load qz is 1900 Watts, therefore 9 — [1/V/,, qz}' — [1/25.5,1900]'

=  [0.039,1900]'. For the simulation where Vh and qz are assumed as being unknown 

and the adaptive algorithm of Chapter 3 is implemented, the initial estimate of 9 is 

chosen as

=  7^5) =  ^  =  ° 0 5 ’

. #2(0) =  9, ( 0) =  2000 .

Figure 4.9 and 4.10 depict the estimation ability of the adaptive identifier with 

respect to the estimates of 1 /Vh and qz. It is evident from these figures that 

9x — 1 /Vh converges to the actual 1/Vh of 0.039 in less than 10 seconds while the 

estimated thermal load converges to the true qz value of 1900 W in less than 10

38
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0.5

1 . 0  
tim e Cmin)

1.5 2.0

Figure 4.9: Case(2): Estimation of

minutes. The selected adaptation gains are

f Ai =  1 ,

I A, =  109.

Figure 4.10: Case(2): Thermal Load Estimation
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Figure 4.11: Case(2): Temperature Regulation

Observe in Figures 4.11 to 4.16 the relative performance of the adaptive and 

non-adaptive laws with respect to a variety of performance measures. Now consider 

the details of this performance. The theoretical values of T2 and T3 that minimize 

the integrand in (2.4) are

T* =  10.125 °C

and

T ; = 24.015 °C

Figure 4.12: Case(2): Total Cost
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Figure 4.13: Case(2): Comfort Cost

Indeed in Figure 4.11 one sees tha t the actual T2 attains this value T2* in around 20 

minutes for both the adaptive and non-adaptive controller. Likewise T3 also 

achieves its optimizing value in about 2 0  minutes.

The left plot of Figure 4.12 depicts the total cost over the attainable steady state 

minimum, i.e Je[t) given by (4.2), and the right plot depicts the total cost J(t) 

given by (4.6). Observe in Figure 4.12, in less than half an hour Je settles down to a 

constant value i.e. the integrand in (4.2) becomes zero. Similarly Figure 4.13

Figure 4.14: Case(2): Energy Cost
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Figure 4.15: Case(2): Airflow Rate

depicts the portion of Je and J  a ttributable to the comfort cost, just as Figure 4.14 

depicts the energy component of Je and J . The two plots on the left of Figures 4.13 

and 4.14 indicate tha t costs stop rising after half an hour. In about 25 minutes, 

total cost rises linearly at the rate of about 18 cents per hour.

Figure 4.16: Case(2): Heat Input
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Figures 4.15 and 4.16 give the corresponding plots for the air flow rate and the 

heat input respectively. After some initial transients, in about 20 minutes these 

settle down to values of 0.114 m 3/s  and —2 , 257.9 W, respectively. Observe f is 

always larger than f am. Note again tha t each of these performance curves applies to 

both adaptive control with unknown Vh and qz and non-adaptive control with 

known Vh and qz.

4.3 Case(3): Ta and Vz unknown

As the title of the section suggests, the ambient tem perature Ta and the effective 

thermal space volume Vz are assumed unknown for the simulations of the adaptive 

algorithm. The actual ambient temperature Ta is 30 °C and the actual effective 

thermal space volume Vz is 255 m3, therefore the actual value for 9 is

9 =  [Ta, ^r]'= [30, =  [30,3.9 x 10~3]'. The initial estimate of 9 is chosen to be

f  (91(0 )  =  f a ( 0 )  =  3 1 ,

\  §2 (0 ) =  l /V z(ti) =  255 =  5 x 1 0 - 3 .

Figures 4.17 and 4.18 depict the estimation ability of the adaptive identifier with 

respect to the estimates of 9\ and 92. It is evident from these figures tha t the 

estimated ambient temperature converges to the actual Ta of 30 °C in about 6  

seconds while 92 converges to the true value of 3.9 x 10~3, in 3 minutes. The 

selected adaptation gains are

r A x - i o 7 ,

I  a 2 =  1 .

Observe in Figures 4.19 to 4.24 the relative performance of the adaptive and 

nonadaptive laws with respect to a variety of performance measures. Now consider 

the details of this performance. On the left plot of Figure 4.19 the actual T2 attains 

the value T2* in around 20 minutes for both the adaptive and nonadaptive controller.
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Figure 4.17: Case(3): Ambient Temperature Estimation

Likewise T3 on the right also achieves its optimizing value in about 20 minutes.

The left plot of Figure 4.20 depicts the total cost over the attainable steady state 

minimum, i.e Je(t) given by (4.2), and the right plot depicts the total cost J(t)

Figure 4.18: Case(3): Estimation of
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Figure 4.19: Case(3): Temperature Regulation

given by (4.6). Observe, in around 10 minutes Je settles down to a constant value 

i.e. the integrand in (4.2) becomes zero. Similarly Figure 4.21 depicts the portion of 

Je and J  attributable to the comfort cost, just as Figure 4.22 depicts the energy 

component of Je and J. Again, two plots on the left of Figures 4.21 and 4.22 

indicate tha t costs stop rising after 10 minutes. After about 12 minutes to ta l cost 

rises linearly at the rate of about 1 0  cents per hour.

Figures 4.23 and 4.24 give the corresponding plots for the air flow rate and the

Figure 4.20: Case(3): Total Cost
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Figure 4.21: Case(3): Comfort Cost

heat input respectively. After some initial transients, in about 15 minutes the air 

flow rate settles down to 0.114 m3/s  and the heat input to —2258 W. Observe f is 

always larger than f am . Note again tha t each of these performance curves applies 

to both adaptive control with unknown Ta and Vz and non-adaptive control with 

known Ta and Vz.

Figure 4.22: Case(3): Energy Cost
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Figure 4.23: Case(3): Airflow Rate

Figure 4.24: Case(3): Heat Input

4.4 Case(4): k and qz unknown

In this section, the parameter k, {pCp), and the thermal load qz are assumed 

unknown for the simulations of the adaptive algorithm. The actual value for the 

parameter k is 1195.95 and the actual thermal load qz is 1900 W, therefore the
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Figure 4.25: Case(4): Estimation of |

actual value for 0 is 0 = [1/k, qz/k]' = [1/1195.95' 1900/1195.95] = [8.36 x 10-4, 1.589]'. The initial

Figure 4.26: Case(4): Estimation of qz/k
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Figure 4.27: Case(4): Temperature Regulation

estimate of 9 is chosen as

Figures 4.25 and 4.26 depict the estimation ability of the adaptive identifier with 

respect to the estimates of 9X and 92. It is evident from these figures th a t  the 

estimated parameter k converges to the actual k of 1195.95 in less than  half minutes 

while the estimated thermal load converges to the true qz value of 1900 W  in around
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Figure 4.29: Case(4): Comfort Cost

10 minutes. The selected adaptation gains are

f Ai =  1 0 - 5 ,

1 A2 =  103 .

Observe in Figures 4.27 to 4.32 the relative performance of the adaptive and 

non-adaptive laws with respect to a variety of performance measures. Now consider 

the details of this performance. On the left plot of Figure 4.27 one sees th a t the 

actual T2 attains the value T2* in around 20 minutes for both the adaptive and 

non-adaptive controller. Likewise T3 also achieves its optimizing value in about 20

Figure 4.30: Case(4): Energy Cost
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Figure 4.31: Case(4): Airflow Rate

minutes.

Figure 4.28 depicts the total cost over the attainable steady state minimum, i.e 

Je(t) given by (4.2) on the left plot, and the total cost J(t) given by (4.6) on the 

right plot. Observe, in less than  15 minutes Je settles down to a constant value i.e.
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Figure 4.32: Case(4): Heat Input
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the integrand in (4.2) becomes zero. Similarly Figure 4.29 depicts the portion of Je 

and J  attributable to the comfort cost, just as Figure 4.30 depicts the energy 

component of Je and J. Again, two plots on the left of Figures 4.29 and 4.30 

indicate tha t costs stop rising after 15 minutes. After about 15 minutes to ta l cost 

rises linearly at the rate of about 75 cents per hour.

Figures 4.31 and 4.32 give the corresponding plots for the air flow rate and heat 

input respectively. After some initial transients, in about 20 minutes these settle 

down to values of 0.114 m3/s  and —2,257.9 W, respectively. Observe f is always 

larger than f am. Note again tha t each of these performance curves applies to both 

adaptive control with unknown k and qz and non-adaptive control with known k 

and qz.

4.5 Case(5): Vh, Ta and Vz unknown

This section documents simulations conducted on the Adaptive Control 

Algorithm formulated in Subsection 3.2.5 of Chapter 3. The actual value of 9 is

9
vh ’ Vh ' Vz

9 is given by

r l  30 l  1/ _
L25.5 ’ 25.5 1 255

, =  [0.039,1.176,3.9 x 10 3]'. The initial estimate of

01 (0) Vi(0) 20=  A  =  0.05,

^(°) = ! i )  =  i  =  L55 

. 93(0) = l / v z(0) = 1/200 =  5 x 10"3 .

The selected adaptation gains are

f Ai =  0.5 x 10-2 ,

^2 =  1 ,

. A3 =  10-2 .

Figures 4.33, 4.34, and 4.35 depict the estimation ability of the adaptive identifier 

with respect to the estimates of ^  and ^-. It is evident from Figure 4.33 tha t
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Figure 4.33: Case(5): Estimation of —

Vh does not converge to the actual Vh of 25.5 m3, however it converges to 17 m 3 in 

about 15 minutes. Having more than two parameters to estimate causes the 

gradient descent based adaptive controller algorithm to fail to estimate the third

Figure 4.34: Case(5): Estimation of ^
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Figure 4.35: Case(5): Estimation of --

parameter. The estimated ambient temperature, on the other hand, converges to 

the actual Ta of 30 °C in about 17 minutes while the estimated thermal load 

converges to the true Vz value of 1900 W in less than 1 minute.

Observe in Figures 4.36 to 4.41 the relative performance of the adaptive and 

nonadaptive laws with respect to a variety of performance measures. Now consider

Figure 4.36: Case(5): Temperature Regulation
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Figure 4.37: Case(5): Total Cost

the details of this performance. On the left plot of Figure 4.36 one sees th a t  the 

actual T2 attains the value T2* in around 20 minutes for both the adaptive and 

non-adaptive controller. Likewise T3 also achieves its optimizing value in about 20 

minutes.

Figure 4.37 depicts the total cost over the attainable steady state minimum, i.e 

Je(t) given by (4.2) on the left plot, and the total cost J(t) given by (4.6) on the 

right plot. Observe, in less than 10 minutes Je settles down to a constant value i.e.

Figure 4.38: Case(5): Comfort Cost
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Figure 4.39: Case(5): Energy Cost

the integrand in (4.2) becomes zero. Similarly Figure 4.38 depicts the portion of Je 

and J  a ttributable to the comfort cost, just as Figure 4.39 depicts the energy 

component of Je and J. Again, two plots on the left of Figures 4.38 and 4.39 

indicate th a t costs stop rising after 10 minutes. After about 12 minutes to ta l cost 

rises linearly at the rate of about 2 0  cents per hour.

Figures 4.40 and 4.41 give the corresponding plots for the air flow rate and heat

Figure 4.40: Case(5): Airflow Rate
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Figure 4.41: Case(5): Heat Input

input respectively. After some initial transients, in about 15 minutes these settle 

down to values of 0.114 m3/s  and - 2 , 258 W, respectively. Observe f is always larger 

than f arn . Note again th a t each of these performance curves applies to both  

adaptive control with unknown 14, Ta and Vz, and non-adaptive control with known 

14, Ta and Vg.

4.6 Case(6): Ta, Vz and qz unknown

This section documents simulations conducted on the Adaptive Control 

Algorithm formulated in Subsection 3.2.6 of Chapter 3. The actual value of 9 is 

9 — [Tq, v̂ ]' — [30, 2 5 5 > ]; =  [30,3.9 x 10-3 , 7.45]'. For this section, like the 

others, two simulations are conducted. In the first, Ta, Vz and qz are assumed to be 

known and the nonadaptive control law of Chapter 2 is implemented. In the second, 

Ta, Vz and qz are assumed as being unknown and the adaptive algorithm of
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Chapter 3 is implemented with the initial estimate of 9 given by 

' 01( O ) = f a (O )= 3 1 ,

. 0 2 (0) =  1 /K (0) =  1/200 =  5 x 10-3,

. 03 (O) =  qz(0)/Vz(0) =  2 0 0 0 / 2 0 0  =  1 0  .

The selected adaptation gains are

' Ai =  104 ,

< A2 =  10-4 ,

, As =  1 0 5 .

Figure 4.42, 4.43 and 4.44 depict the estimation ability of the adaptive identifier 

with respect to the estimates of Ta, V2 and qz. It is evident from Figure 4.42 that 

the estimated ambient temperature converges to the actual Ta of 30 °C in about 3 

minutes. The estimated effective thermal space volume, on the other hand, 

converges to the value of 1/0.0176 =  56.818 m 3 in 25 minutes as can be seen from 

Figure 4.43. Recall tha t the true value of Vz is 255 m3. Estimating three parameters 

by using gradient descent method has resulted in failure to estimate one of them

Figure 4.42: Case(6): Ambient Temperature Estimation
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Figure 4.43: Case(6): Estimation of y-

correctly as was the case with the Case(5) in previous subsection. The estimated 

thermal load also converges to the value of 33.5051/0.0176 =  1,903.7 W, which is 

quite close to the true value of 1900 W, in 25 minutes as can be seen from

Figure 4.44: Case(6): Estimation of



www.manaraa.com

60

Figure 4.45: Case(6): Temperature Regulation

Figure 4.44.

Observe in Figures 4.45 to 4.50 the relative performance of the adaptive and 

nonadaptive laws with respect to a variety of performance measures. Now consider 

the details of this performance. On the left plot of Figure 4.45 one sees th a t  the 

actual T2 attains the value T2* in around 30 minutes for both the adaptive and 

nonadaptive controller. Likewise T2 also achieves its optimizing value in about 30 

minutes.

Figure 4.46: Case(6): Total Cost
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Figure 4.47: Case(6): Comfort Cost

Figure 4.46 depicts the total cost over the attainable steady state minimum, i.e 

Je(t) given by (4.2) on the left plot, and the total cost J(t) given by (4.6) on the 

right plot. Observe, in around 25 minutes Je settles down to a constant value i.e. 

the integrand in (4.2) becomes zero. Similarly Figure 4.47 depicts the portion of Je 

and J  attributable to the comfort cost, just as Figure 4.48 depicts the energy 

component of Je and J . Again these two plots on the left of Figures 4.47 and 4.48 

indicate tha t indicate tha t costs stop rising after 25 minutes. After about 25

Figure 4.48: Case(6): Energy Cost
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Figure 4.49: Case(6): Airflow Rate

minutes total cost rises linearly a t the rate of about 10 cents per hour.

Figures 4.49 and 4.50 give the corresponding plots for the air flow rate and heat 

input respectively. After some initial transients, in about 20 minutes these settle 

down to values of 0.114 m3/s  and —2258 W, respectively. Observe f is always larger

t i m e  (hr)

Figure 4.50: Case(6): Heat Input
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than f am . Note again tha t each of these performance curves applies to both  

adaptive control with unknown Ta, V~ and qz, and non-adaptive control with known 

Ta, Vg and qz.

4 .7  C ase(7 ): Ta a n d  qz t im e  v a ry in g

This section documents the performance of the adaptive controller over half a 

day under a realistic time varying ambient temperature and thermal load profile. 

The profile itself has been borrowed from Roth et al [6].

While all the other parameters are as in Table 1, the rest are as follows. The flow 

rate set point is fixed throughout at f r =  0.142 m3/s. The simulation begins at 

t =  0 hours, with all the variables at their steady state optimum. A change occurs 

in the set point temperature Tr from 27°C to 24°C at the one hour mark. The

Figure 4.51: Case(7): Ambient Temperature and its Estimate
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Figure 4.52: Case(7): External Load and its Estimate

ambient temperature Ta(t) is sinusoidal, with a time period of 24 hours, mean of 

27°C, amplitude of 6°C and a peak at the 10 hour mark. The thermal load begins 

at a constant value of 100 W, ramps up to 1900 W between the 1.5 and 2 hour 

marks and oscillates sinusoidally with an amplitude of 50 W and period of 1 hour, 

around a mean of 1900 W, until about the 6 hour mark. This rise in load and 

oscillation is due to lighting, equipment and varying occupancy. At about the 

6 hour mark, an additional load due to solar intensity takes effect. This load is zero 

mean, sinusoidal with 200 W  amplitude and 24 hour time period. At the 10.5 hour 

mark, the thermal load due to occupancy and lighting begins to be removed linearly 

until at the 11 hour mark it is reduced to its constant 100 W level plus a residual 

solar load. This simulates the beginning of the unoccupied period of the building.

The adaptive algorithm is implemented with Ai and A2 as in (4.1). Figures 4.51
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Figure 4.53: Case(7): Total Cost and Excess Total Cost

and 4.52 respectively display the ability of Ta(t) and qz(t) to track Ta and qz. 

Observe tha t the tracking is almost perfect.

Figure 4.53 displays the total cost incurred and the so called minimum steady 

state total cost. The latter is computed with the integrand in (2.4) obtained at time 

t as the minimum value it can a ttain  for the current values of Ta(t) and qz(t), with 

the right hand sides of (2.2) and (2.3) equated to zero.

Since under the time varying Ta(t) and qz(t), steady state is in general 

unattainable, the actual cost could theoretically be below the so called steady state 

minimum. This is indeed the case in Figure 4.53, where once the variable load and 

ambient temperature effects get in, the unattainability of steady state forces the 

controller to seek a lower value of the cost function than what would have been 

possible under steady state condition.
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Figure 4.54: Case(7): Comfort Cost and Excess Comfort Cost

As expected, the gradient of the total cost is highest in the period of greatest 

occupancy. Overall, over the 12 hour period under consideration, (observe, this 

includes the period of maximum occupancy), the total cost incurred is less that 

$4.50. Figures 4.54 and 4.55 display the cost component attributable to comfort and 

energy respectively.

Figure 4.56 depicts the actual room temperature T3(t) and the desired reference 

Tr(t). Observe T3 tracks Tr quite closely, with slight glitces at points th a t mark the 

onset of substantial changes in the qz(t) profile. Figures 4.57 and 4.58 give the flow 

rate /  and heat input qh respectively. Except at points of sudden changes in qz(t) 

profile, these more or less follow a steady course. Observe, qh is reduced in 

magnitude in periods of low qz(t). Moreover, the actual flow rate exceeds the 

allowed minimum / om.
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Figure 4.55: Case(7): Energy Cost and Excess Energy Cost

Figure 4.56: Case(7): Room Temperature and Desired Room Temperature
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Figure 4.57: Case(7): Airflow Rate and Desired Airflow Rate
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Figure 4.58: Case(7): Heat Input
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4.8 Conclusion

This chapter has documented simulations conducted on the Adaptive Control 

Algorithm formulated in Section 3.2 of Chapter 3. The principle purpose of the 

simulations reported in this chapter has been to compare the Adaptive Control 

Algorithm of Chapter 3 with its nonadaptive counterpart in Chapter 2. For this 

purpose, two types of simulation results for first six different combinations have 

been reported. The first set, cases (1) through (4), has considered the situations 

where just the two out of the five parameters are constant but unknown. There are 

actually Cf =  10 possible combinations of two parameters out of five parameters 

possible. The second set, cases (5) and (6), considers the situations where three out 

of the five parameters are constant but unknown. Again, there are actually Cf =  10 

possible combinations of three parameters out of five parameters possible. For these 

six cases, the identifier actually works fine. In a quarter of an hour most of the 

identifications were done. In some cases identification took only a few seconds. For 

the cases (5) and (6), the identifier failed to identify one out of three parameters 

correctly, though. Still, in 15 minutes 9 settled down at a value close to 9.

For the first six cases, the actual state variables T2 and T3 a tta in  the theoretical 

values tha t minimize the integrand in (2.4) in less than 20 minutes for both the 

adaptive and nonadaptive controller. The total cost over the attainable steady state 

minimum, Je(t), settles down to a constant value, i.e. the integrand in (4.2) 

becomes zero. This constant value, however, is higher for the adaptive case than the 

nonadaptive case as expected. Still, it is clear from the simulations th a t after about 

a quarter of an hour, total cost rises linearly at a constant rate.
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For each adaptive case identifying constant and unknown parameters, th e  air flow 

rate and the heat input plots have been compared with their nonadaptive 

counterparts. After some initial transients, before half an hour finishes these settle 

down to values of 0.114 m3/s  and —2258 W respectively.

The last case, case (7), by identifying time varying parameters, differs from the 

first six cases. It documents the performance of the adaptive controller over half a 

day under a realistic time varying ambient temperature and thermal load profile. 

The tracking observed to be almost perfect. Since under the time varying 

parameters steady state is in general unattainable, the actual cost is below the so 

called steady state minimum. The gradient of the total cost is highest in the period 

of greatest occupancy.
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CHAPTER 5

ADAPTIVE CONTROLLER SCHEME 2: RECURSIVE LEAST

SQUARES

While the Adaptive Controller Scheme 1 presented in Chapter 3 works fine for 

some of the double and triple unknown parameters, it simply does not identify the 

parameters once the number of them that are unknown becomes four or five. As 

observed in the last two cases of the Gradient Descent Algorithm simulations of 

Chapter 4, even for three parameter identification, the algorithm has problems 

identifying one of the parameters. The present chapter, therefore, focuses on a 

different scheme for an identifier, using the recursive least squares (RLS). The 

outline of this chapter is as follows. Section 5.1 presents the RLS theory, Section 5.2 

presents the application of RLS to the HVAC system, Section 5.3 presents the 

simulations, and Section 5.4 is the conclusion.

5.1 Recursive Least Squares

The principle of least squares is formulated by Gauss a t the end of the eighteenth 

century to determine the orbits of planets [8]. According to this principle, the 

unknown parameters of a mathematical model should be chosen in such a  way that

the sum of the squares of the differences between the actually observed 

and the computed values, multiplied by numbers th a t measure the 

degree of precision, is a minimum.
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Recursive least squares can be applied to the HVAC system model which is 

written in the following linearJri-parameters form for the convenience

where the elements of #;’s, i =  1,2, are unknown parameters and the elements of 

Vi’s, i =  1, 2, are known functions tha t depend on other known variables. These 

elements of V are called regression variables, or the regressors [8], because the model 

in (5.1) is itself a regression model. The vector O' — [91 92] and the block diagonal 

matrix V(t) whose diagonal blocks are simply V\(t) and V2(t) are the same 9 and V 

which have been introduced in Section 3.1.1.

Pairs of observations and regressors are obtained online. The problem is to 

determine the parameters in such a way that the outputs computed from the HVAC 

system model (5.1) agree as closely as possible with the measured variables x(t) in 

the sense of least squares. Since measured variable x ( ty s are linear in parameters 9 

and the least squares criterion is quadratic, the problem admits an analytical 

solution [8].

Introduce the notation

and the least squares error

x(t) =  [ X i ( t )  x2(t) ]' (5.2)

e(t) — V'(t)9(t) — x(t) (5.3)

where

V'(t) =
V[(t) 0

o v:;(()
(5.4)
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have also been introduced. The least squares algorithm then minimizes the  

integraLsquared-error (ISE) [9]

IS E  = J  e2( r ) d T .  (5.5)
o

Owing to the linearity of the error equation, the estimate may be obtained directly

from the condition

a_

39

I I
J  e2(r )d r  = 2  J  V ( r )  V ' ( t ) 0 ( t ) x ( t ) dr =  0 (5.6)

so tha t the least-squares estimate is given by

9(t) =
I l

J  V (r )V ' (T )d T  J  V ( t ) x ( t )d  

.0 J Lo

(5.7)

5.2 Application _ Recursive Least Squares

The overall adaptive control algorithm is a combination of the identifier given in 

Section 5.1 and the controller as given in Chapter 2, with 9 replaced by 9 as was the 

case in Section 3.1.2 for the adaptive controller using gradient descent. The rest of 

this section presents the adaptive identifier using RLS for the HVAC system. The 

simulations for this case are given in Section 5.3.

In this section the identifier of Section 5.1 is used to estimate five system 

parameters, namely,

•  the effective volume of the heat exchanger Vh,

•  the temperature of the outside air Ta,

•  k = pCp where p is the air density and Cv is the constant pressure specific 

heat of air,
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• the effective thermal space volume Vz and

• the thermal load qz .

The HVAC system

is written first as
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where

for the state variable filters

5.3 RLS Simulations

This section documents simulations conducted on the Adaptive Control 

Algorithm formulated in Section 5.1 of the present chapter. The principle purpose
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of the simulations reported in this chapter is to compare the Adaptive Control 

Algorithm of Chapter 5 with its nonadaptive counterpart in Chapter 2. For this 

purpose, two types of simulation results are reported. In the first simulation, all of 

the parameters are assumed known and the nonadaptive control law of Chapter 2 is 

implemented. In the second simulation, five parameters are assumed as being 

unknown but constant and the adaptive algorithm of Chapter 5 is implemented 

with specified initial estimates.

5.3.1 Specifics of the Simulation

Specifically, the following setting from Table 1 is considered throughout the 

simulations:

a2 = 4 .8 6 x l0 -3 $/min-°C2,

a3 = 5.39xlO~10 $/m in-W 2,

a4 = 5 .20x l0~5 $-m in/m 6,

Of5 =  1 .22x l0 -6 $-min2/m 9 and

fam = 0.05 m3/ s .

The set points Tr and f r are 24 °C and 0.142 m3/s  respectively, and the initial value 

for the state vector is

J T2(0) -  16 °C 

\  T3(0) =  28 °C

for all of the simulations.

The actual values of the parameters used throughout the simulations are;

k = pCp = 1.19 kg /m 3x 1005 J/kg-°C =  1195.95 J /m 3-°C,

76
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14 =  25.5 m3,

Vz =  255 m3,

Ta =  30°C and 

qz = 1900 W .

The initial estimate of 9 is given by

' #1.(0) =  1/ 14(0) =  1/ 20 ,

#2(0) = T a/Vz(0) = 31/20,

< 03(0) =  l /V h(0)/k{0) = 1/20/1190,

4 (0) =  1/ 14(0) =  1/ 200 ,

. 4 (0 )  =  qz{0)/K(0)/fe(0) =  2000/200/1190.

For the identification process using RLS, there is no identification for the  first 5 
t

minutes so th a t JV(r)V '(r)dT  becomes well conditioned. After that, we apply the 
0

identifier between t =  5 and t =  6.5 minutes. The estimated parameters are then 

applied to the control algorithm.

5.3.2 Plots

Observe Figures 5.1 to 5.6 which depict the relative performance of the adaptive 

and nonadaptive laws with respect to a variety of performance measures. Now 

consider the details of this performance. On the right plot of Figure 5.1 one sees 

tha t the actual T3 attains the value T3* =  24.015°C in around 20 minutes for both 

the adaptive and non-adaptive controller. On the left plot of the same figure, 

however, it is observed th a t even though the actual T2 attains a constant value for 

both the adaptive and non-adaptive controller, the constant values differ by 0.804°C 

with the adaptive controller value T2 being lower than its non-adaptive counterpart.
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Figure 5.1: RLS: Temperature Regulation

Figure 5.2 depicts the total cost J  incurred and the so called minimum steady 

state total cost Je. The latter is computed with the integrand in (2.4) obtained at 

time t as the minimum value it can attain  subject to (2.9) and (2.10). Observe, in 

less than 15 minutes Je settles down to a constant value i.e. the integrand in (4.2) 

becomes zero. After about 15 minutes total cost rises linearly a t the rate of about 18 

cents per hour for the non-adaptive case and 21 cents per hour for the adaptive case. 

Similarly Figure 5.3 depicts the portion of Je and J  a ttributable to the comfort 

cost, just as Figure 5.4 depicts the energy component of Je and J . Again, two plots

Figure 5.2: RLS: Total Cost
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time (hr) time (hr)

Figure 5.3: RLS: Comfort Cost

on the left of Figures 5.3 and 5.4 indicate th a t costs stop rising after 10 minutes.

Figures 5.5 and 5.6 give the corresponding plots for the air flow rate and heat 

input respectively. After some initial transients, in about 15 minutes, the air flow 

rate settles down to 0.114 m 3/ s  and the heat input for the adaptive case becomes 

—2, 424.8 W compared to —2, 257.5 W for the non-adaptive case. Observe the 

actual flow rate always exceeds the allowed minimum f am .

Figure 5.4: RLS: Energy Cost
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Figure 5.5: RLS: Airflow Rate

Figure 5.6: RLS: Heat Input

5.4 Conclusion

This chapter has presented an adaptive version of the controller described in 

Chapter 2 by using the recursive least square approach. After the theoretical 

information about RLS in Section 5.1, the identifier is applied to the nonlinear
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optimal controller in Section 5.2. Section 5.3 has documented simulations conducted 

on the RLS Algorithm. The principle purpose of the simulations reported in this 

chapter has been to compare the Adaptive Control Algorithm of Chapter 5 with its 

nonadaptive counterpart in Chapter 2.

The actual state variable T3 attains the theoretical value th a t minimizes the 

integrand in (2.4) in less than 20 minutes for both the adaptive and nonadaptive 

controller. The actual state variable T2, on the other hand, attains a value slightly 

lower than the theoretical value tha t minimizes the integrand in (2.4) for the 

adaptive controller. The total cost over the attainable steady state minimum, Je(t) 

settles down to a constant value, i.e. the integrand in (4.2) becomes zero.
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CHAPTER 6 

CONCLUSION

This study presents a new nonlinear optimal control algorithm for HVAC 

systems. Adaptive implementation when the defining parameters are unknown is 

also given. A key feature of the adaptive identification algorithm imbedded within 

the overall scheme is its ability to track estimated system parameters. This 

algorithm differs from its predecessors in tha t it does not suffer from some of their 

major limitations. Thus it can be implemented on line. Further, it eschews the 

traditional LQR framework, and thus does not have to discard a non-quadratic term 

from the underlying cost function to be optimized. This term measures a crucial 

component contributed by the cost of operating the fan within the HVAC system.

Although the non-adaptive control law itself does not require implementation of 

any differential equations, the adaptive law does. Since differential equations can be 

computationally onerous, it is recommended th a t a sampled data  version of this law 

can be considered. Such a sampled data  controller will be amenable to current 

microprocessor based implementations and naturally defines a direction of future 

work.

The actual optimal controller, even in its non-adaptive form, involves a 

linearization in its derivation. As such, unless one starts ’’close” to the state values 

tha t optimize the integrand in (2.5), subject to the right hand sides of (2.2, 2.3) 

being zero, the law itself is suboptimal. Such a linearization can be avoided if one
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obtains a closed form solution to the boundary value problem th a t defines the 

optimal controller. Exploring the existence of such a solution is recommended.
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APPENDIX A

MINIMIZING THE COST FUNCTION

We will determine the control law tha t minimizes the cost function

tl
J(u) — J  F(x, u, t)dt (A

to

subject to the system equations which are a general set of n nonlinear differential 

equations

where x  is the column n-vector of state variables, u is the column m-vector of input 

or control variables and t denotes time [3]. We shall assume th a t the components 

gi(x,u,t), i = 1 ,2 , . . . ,  n, of vector g are continuous and satisfy standard 

conditions, such as having continuous first partial derivatives so th a t the unique 

solution for (A.l) exists for given initial conditions [10].

Introduce a vector of Lagrange multipliers p = \pi,. . .  ,pn\ where prime denotes 

the transpose, so as to form an augmented functional incorporating the constraints:

x(t) = g(x,u,t) (A.2)

and subject to the initial conditions

x ( t 0) =  X q , (A.3)

(A.4)
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Integrating the second term of the integrand of (A.4) by parts gives

where the Hamiltonian function is defined by

For continuous and differentiable u on t0 < t < t\ and for fixed t0 and ti, the 

variation in Ja corresponding to a variation 5u in u is

where Sx is the variation in x in the differential equations (A.2) due to 8u. Since 

x(t0) is specified, (5x)t=t0 =  0. We can simply remove the term involving Sx in (A.6) 

by suitably choosing p, i.e. by taking

Therefore necessary conditions for u* to minimize (A.l) subject to (A.2) and 

(A.3) are th a t (A.7), (A.8) and (A.9) hold.
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APPENDIX B

LINEARIZATION

First we will describe a linearization process tha t expands the nonlinear state 

equation into a Taylor series about a nominal operating point, then we will apply it 

to the HVAC system to get a linearized set of system equations in Section B.l. For 

the linearization process, all the terms of the Taylor series which have a higher order 

than the first order are discarded, and linear approximation of the nonlinear state 

equation at the nominal point results [11].

We will represent a nonlinear system by the following vector-matrix s tate  

equations:

where x(t) represents the t i x l  state vector, u(t) the m  x 1 input vector, and

states. Expanding the nonlinear state equation of (B.l) into a Taylor series about 

x(t) = x*(t) and neglecting all the higher-order terms yields

(B.l)

denotes an n x 1 function vector. The nominal operating trajectory 

will be denoted by x*, corresponding to the nominal input u* and some fixed initial

(B.2)
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Thus, we have linearized the nonlinear system of (B.l) at a nominal operating point

B .l  Linearization of the HVAC System

Using the process described above, we linearize the HVAC system

First the nominal trajectory about which the nonlinear s tate  equation of (B.8) is 

linearized, i.e. x* and p*, corresponding to the nominal input u*, is obtained by
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Now that the nominal trajectory about which the nonlinear state equation of 

(B.8) is linearized is obtained, we can continue with the linear approximation 

described previously at the beginning of the present Appendix. Namely, we rewrite 

the system equation (B.8) in vector-matrix form as

Using the information obtained until now in the present Section we get
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APPENDIX C 

STABILITY OF THE LINEAR REGULATOR

A general closed form solution of the optimal control problem is possible for a 

linear regulator with quadratic performance index [3]. Specifically, we will consider 

the time invariant system



www.manaraa.com

96

and combining this equation with (C.6) produces the system of linear equations
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with boundary condition given by (C.9) and (C.12) as

P(h) = 0. (C.17)

Equation (C.16) is matrix Riccati differential equation.

It should be noted tha t even tough the matrices A, B, Q and R  are all time 

invariant the solution P(t) of (C.16), and hence the feedback m atrix in (C.13), are 

tim e varying. Of particular interest is the case when the final time t\ in (C.2) tends 

to infinity. Let Qx be a matrix having the same rank as Q and such th a t Q =  Q'XQ\. 

The solution P(t) of (C.16) becomes a constant m atrix P  [12], and we have [3] 

T h e o re m  1 . If the constant linear system (C.l) is c.c. and [A,Qi\ is c.o. then the 

control which minimizes

using the fact th a t P  is the solution of (C.20). Because of the assumption tha t 

[A,Qi] is c.o., A  is asymptotically stable [13].

OO

(C.18)
o

is given by

u* =  —R~lB'Px* . (C. 19)

where P is the unique r.s.p.d. matrix which satisfies the algebraic Riccati equation

P B R - lB 'P  -  A 'P -  PA  -  Q = 0 . (C.20)

The closed loop system obtained by substituting (C.19) into (C .l) is

x  =  Ax (C.21)

where A  =  A — B R  1B'P. It is easy to verify th a t

A'P  +  P A  = A'P  +  P A - 2 P B R - 1B'P

- P B R ~ lB 'P  -  Q , (C.22)
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